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a b s t r a c t

Alzheimer’s disease (AD) has become a severe chronic disease that affects the health of the elderly all
over the world. And the number of patients currently suffering continues to rise each year. With the
rapid development of medical imaging technology, although researchers have done extensive works
on the diagnosis of AD through new computer vision technology, it is still a challenge to realize the
diagnosis of AD and Mild Cognitive Impairment (MCI) as precise as possible end-to-end by relying on
Magnetic Resonance Imaging (MRI) image resources. In this paper, a new variant model of the Broad
Learning System (BLS) for accurate diagnosis of AD and MCI is presented for MRI images. The proposed
model is composed of two modules named feature mapping module and feature enhancement module.
To adapt to the characteristics of medical images, a new feature mapping module that contains multi
groups of feature down-sampling is designed to get the multi-scale features of the images without
any additional feature selection. As a result, the proposed model can integrate multi-scale convolution
features of the feature mapping module and abstract features of the feature enhancement module end-
to-end when learning the AD diagnostic task. At the same time, the proposed model is a lightweight
model whose complexity has been significantly simplified. To verify the validity of the proposed model,
the ANDI-1 dataset was used in the relevant experiments. After 5-fold cross-validation, the proposed
model has achieved the accuracy of 91.83% and 75.52% for the AD diagnostic task and MCI diagnostic
task, respectively. The experimental results demonstrate that the proposed model could achieve better
performance compared to other methods under the AD and MCI diagnostic tasks.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer’s Disease (AD), the most common form of dementia,
s a serious chronic disease caused by organ changes in the brain.
nce AD is diagnosed, patients will suffer from it until death [1].
he mean remaining lifespan after diagnosis is approximately
hree to nine years [2–4]. According to the 2018 World Alzheimer
eport, close to 50 million people worldwide are living with
ementia by 2018. And this number will triple to 152 million
n 2050. Worldwide, there will be one new case of dementia
very three seconds [5]. The state of AD can be divided into three
ategories: Alzheimer’s Disease (AD), Mild Cognitive Impairment
MCI), Control Normal (CN), of which MCI can be subdivided
nto stable Mild Cognitive Impairment (sMCI) and progress Mild
ognitive Impairment (pMCI).
Undoubtedly, thanks to the development of medical imaging

echnology, more and more technical means, such as Magnetic

∗ Corresponding author.
E-mail address: liuzhl@scut.edu.cn (Z. Liu).
ttps://doi.org/10.1016/j.asoc.2022.108660
568-4946/© 2022 Elsevier B.V. All rights reserved.
Resonance Imaging (MRI), Positron Emission Tomography (PET),
provide effective and accurate evidence for the diagnosis of dis-
eases. As MRI images are relatively easy to obtain (low price
and short detection time) and have a higher resolution with the
3D structure, there are more MRI images than other data in
clinical practice. As a result, the researchers conducted a large
number of relevant studies using MRI data [6,7]. And related
brain morphometric analysis using structural MRI data has been
proven that it is effective in identifying anatomical differences
between AD patients and normal controls, and in assessing the
progression of mild cognitive impairment. As a result, more and
more researchers are focusing on the diagnosis of AD by studying
MRI images of patients [8–11].

Depending on the classification approach used by the re-
searchers, the algorithms known today may be briefly divided
into two categories: traditional machine learning methods and
deep learning methods.

Traditional methods have done a great deal of meaningful
work in finding effective feature expression. These methods usu-
ally adopt certain methods to achieve a dimensional reduction of

https://doi.org/10.1016/j.asoc.2022.108660
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.108660&domain=pdf
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ata or perform additional pre-processing of data. And then new
eatures are extracted as the input of the classifier for AD classifi-
ation, while the classification methods mainly adopt traditional
achine learning methods such as SVM. There are two common

ypes of cases above. The first way is to predefine multiple Re-
ions of Interests (ROIs) [12] or coordinate points in the brain’s
RI image as higher-level features or classification attentions for
iagnosis. Its basic idea is that cognitive impairment is due to the
hanges of the brain tissue in special areas. As such, these ROI-
evel features attempt to model structural changes in predefined
OIs [13]. And the predefined coordination point aims to provide
ttention sites for the diagnosis of AD to grasp the structure
hanges [14]. At the same time, such approaches also aim to
xplore more effective ROI methods. After analyzing a variety of
lassical methods including Histogram of Gradients (HoG), Haar-
ike and Local binary patterns (LBP) and so on, [15] concluded
hat multi-feature fusion could obtain relatively better diagnostic
esults in the diagnosis of chest X-ray image-related diseases.

The second method is that the whole original brain image is
aken as the feature, and relatively key features are extracted
hrough certain dimension reduction methods for the next step
f diagnosis. Principal Component Analysis (PCA) is particularly
mportant for feature dimensionality reduction during and after
eature fusion because the dimension of brain MRI images is huge
f only extended, so it is commonly used [16,17]. [18] obtained
he abstract features of MRI images through the fusion of 3D-HOG
nd PCA, and then realized the diagnosis of AD by using random
orest as a classification model. Similar to the above methods, [19]
onstructs a complex disease diagnosis model for medical im-
ges by merging of various features and traditional methods. In
ddition, the 2D/3D automatic encoder is also used as a fea-
ure extractor or dimension reduction method. The model [20]
onstructs a convolutional auto-encoder to perform the trans-
ormation of brain MRI images from high-dimensional data to
ow-dimensional data and further applies SVM to complete the
inal AD diagnostic task.

Except for the above methods, deep learning approaches,
hich are proposed in the field of computer vision, are widely
pplied in AD diagnosis and tend to develop ensemble diag-
osis methods. For the single deep learning model, numerous
ethods are designed for AD diagnosis, such as [21,22]. These
ethods provide different deep structures for performing AD
iagnostic task, mainly based on multi-layer convolution. How-
ver, it also leads to a large number of model parameters and
akes the model more complex, which is not conducive to
ctual deployment. For the ensemble model, the simplest and
ost efficient method is to integrate several models, which may
ake the model more robust and stable in performance [23–28].
ith the further development of data diversity, multi-modal data

Image, Cerebrospinal Fluid(CSF), and so on.) ensemble learning
re increasingly attracting attention [29–32]. Furthermore, the
iagnosis of AD through multitasking joint learning was also
roposed by researchers, but beyond the scope of this study [33].
For the strategy of the design model, although the above

ifferent kinds of methods have brought new ideas to the di-
gnosis of AD and improved the diagnostic results, they are
acing inevitable challenges due to their respective limitations.
or the first type, pre-defined regions of interest require ad-
itional prior knowledge, that is, additional algorithms should
e applied to complete this preprocessing step. In addition, this
wo-stage method has no backward learning ability because the
econd stage is independent of the first stage. And the perfor-
ance of the second stage relies heavily on the preprocessed

eatures of the first stage. Therefore, an end-to-end method is
eeded to close the gap between the two stages. For the second

ind, the ensemble learning methods not only need different

2

algorithms to obtain various features or excellent model groups
but also need to develop appropriate fusion strategies for the
above features or model groups to achieve better performance,
in which the diagnosis process is complicated and inefficient.
Medical images usually face the problem that it is difficult to label
and the number of labeled images is limited. Thus, multi-modal
ensemble learning with data augmentation is more expensive and
challenging to achieve. As a result, improving the performance
of a single model based on MRI images is still an important
work that requires more attention. In addition, while ensuring the
performance of the model, a more concise and lightweight model
is also an important requirement in the actual deployment of the
model.

It is well known that medical images are typically charac-
terized by global similarity and local differences. With limited
medical image resources, considering the global similarity and
local differences in MRI images is a beneficial means that we can
take into account.

Considering the above problems and practical requirements,
we are committed to designing a new module combining the
characteristics of global similarity and local difference of medi-
cal images, realizing the end-to-end classification, and providing
a lightweight model on the premise of ensuring performance.
As a consequence, a novel 3D convolutional variant algorithm
based on BLS is proposed in this paper, which is for the pur-
pose of providing a better alternative model to diagnose AD by
using MRI images. Proposed by Chen et al. in 2018 [34], the
BLS algorithm is a new neural network structure that contains
a feature mapping module and a feature enhancement module,
which is based on the Random Vector Functional-Link Neural
Network (RVFLNN) [35]. With its special network structure, BLS
can contribute to the classification by considering the differ-
ent features of different levels. Benefit from the advantage, the
model designed in this study can take both the highly abstract
features obtained by the multi-layer convolution operation and
the multi-scale features obtained by the underlying convolution
layers into account. Therefore, the contributions in this paper can
be summarized as follows:

• New module: A new Feature Mapping Module (FMM) for
Broad Learning System (BLS) is designed based on 3D con-
volution to better extract the overall features of MRI images.
Then the algorithm itself can take into consideration the
global similarity and local difference of medical images.

• Light-weighted: Compared to other similar AD diagnostic
algorithms and BLS homologous algorithms, the proposed
model is more concise and the complexity of the model is
smaller. To our knowledge, this algorithm is the first 3D
model of homologous heterogeneity of the BLS algorithm
based on MRI images.

This paper is mainly composed of the following parts. The
introduction and contributions are given in the first section. The
second section presents the dataset, data preprocessing, and the
model proposed in this paper. In the third section, the proposed
model and other related algorithms are combined into the exper-
imental analysis. Finally, the summary of the full paper and future
work are given in the fourth section.

2. Materials and methods

2.1. Data description

Data used in the preparation of this article were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
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Fig. 1. The overall flow of AD diagnosis based on MRI images: from preprocessing of raw images to disease classification. The preprocessing operation, such as
kull removal, of the original image data is currently basic and indispensable for most algorithms. In addition to the above operations, the model in this paper no
onger requires any further feature preprocessing operations, thus it is an almost end-to-end diagnostic model. The preprocessed MRI image data is divided into
wo sub-tasks, the AD diagnosis task and the MCI diagnostic task. Among them, the model trained through the AD diagnostic task can be transferred to the MCI
iagnostic task.
-

ββ
Table 1
The demographic information about the ADNI-1 dataset used in this work.

AD CN pMCI sMCI unMCI SUM

Subjects’ number 188 228 164 126 112 818
Age range 55–91 60–90 55–88 55–88 55–89 55–91
Males/Females 99/89 118/110 100/64 84/42 74/38 475/343

Note: unMCI means MCI converters or non-converters unknown.

(adni.loni.usc.edu). The ADNI was launched in 2003 by the Na-
tional Institute on Aging (NIA), the National Institute of Biomed-
ical Imaging and Bioengineering (NIBIB), and the Food and Drug
Administration (FDA), as a 5-year public–private partnership, led
by the principal investigator, Michael W. Weiner, MD. The pri-
mary goal of ADNI is to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological assess-
ments subjected to participants could be combined to measure
the progression of MCI and early AD. For more details of the ADNI
database, please check http://adni.loni.usc.edu.

The public dataset Alzheimer’s Disease Neuroimaging Initiative
(ADNI-1) [6] is used as the training and testing dataset in this
tudy. It contains baseline brain MRI images from Alzheimer’s
isease patients and normal control subjects. The demographic
nformation of the study subjects is reported in Table 1. All images
ere downloaded in the NIfTI format after being licensed by the
DNI website: http://adni.loni.usc.edu/ and http://ida.loni.usc.
du/.
ADNI-1: The dataset contains 818 subjects, and it mainly con-

tains three categories named AD, CN, and MCI. Among them,
MCI is subdivided into three classes according to whether it is
converted to AD in a limited period (36 months), namely, pro-
gressive MCI (pMCI), stable MCI (sMCI), and unknown (unMCI).
The pMCI indicates that the patient was diagnosed with MCI at
the first visit, but converted to AD during a 36-month follow-
up visit. In contrast, sMCI illustrates that the patient did not
change from MCI to AD within 36 months. The unMCI means
that some diagnostic results may have been missing during the
longitudinal visits, leading to the final diagnosis being unknown.
In some earlier studies, such subjects were included in the sMCI
group. There is a total of 818 3D-structural MRI images used in
this study, including 188 AD, 228 CN, 164 pMCI, 126 sMCI, and
112 unknown convert MCI.

2.2. Data preprocessing

According to the ADNI acquisition protocol [6], brain examina-
ions were performed in 1.5T using a T1-weighted
3

sequence. The following preprocessing steps were considered
undergone on MRI images: (1) 3D grad warp correction for
geometry correction caused by gradient non-linearity [36], (2)
B1 non-uniformity correction for intensity correction caused by
non-uniformity [37]. These preprocessing steps help to improve
the standardization among MRI images from different platforms.
The above-mentioned pre-processing methods are all processed
by the ADNI website, that is, the image obtained from the ADNI
website has been subjected to the above-mentioned preprocess-
ing. Fig. 2.(a) shows the expanded views of an MRI image at three
viewing angles.

A further processing procedure was then performed on the
downloaded images, this procedure consisting of: (1) image re-
orientation; (2) cropping; (3) skull-stripping; (4) image normal-
ization, which normalizes the image to the MNI standard space by
co-registration to the MNI template [38]. MRI images were then
segmented into Gray Matter (GM) and White Matter (WM) tissue
probability maps. After this phase, all MR images resulted to be of
size 121 × 145 × 121 voxels. Fig. 2.(b) shows the expanded views
of an MRI image at three viewing angles. The whole process was
performed by using the CAT12 [39] software package installed
on the Matlab platform (Matlab R2016b, The MathWorks). Here,
the above preprocessing operation of the original MRI image is a
routine step, which is adopted by almost all classification diagno-
sis algorithms, but it is still a relatively important pre-sequence
step.

MRI volumes were visually inspected for checking homogene-
ity and absence of artifacts both before and after the preprocess-
ing step. The image representation at different stages is visible in
Fig. 2.

2.3. Method preliminaries

Broad Learning System (BLS) model is proposed by Chen
et al. [34]. The network structure of BLS is developed from that
of the random vector functional-link neural network (RVFLNN),
which is a special three-layer network structure proposed by Pao
et al. [35]. The BLS algorithm has several variations, such as Fuzzy
BLS [40], BLSReg [41], and BLSRubst [42,43]. Fig. 3 illustrates the
basic model of BLS and XXX ∈ RN×m is the input matrix, N means
the number of instances, and m means the dimension of every
instance.

After concatenating the output of the feature mapping layer
and enhancement layer, it can be thought as the overall input of
output layer, denoted as A, where AAA = [ψ(XXXWWW ei +βββei )∥ξ (ZZZWWW hj +

βhj )]. WWW e,βββe are the weights and bias from X to the feature
mapping layer and WWW ,βββ connect the feature mapping layer to
h h

http://adni.loni.usc.edu/
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Fig. 2. Illustration of data representation: (a) Original MRI image. It should be processed by image re-orientation, cropping, skull-stripping, and image normalization.
From left to right are: Coronal View, Sagittal View, and Axial View. (b) Preprocessed image. From left to right are: Coronal View, Sagittal View, and Axial View.
Fig. 3. Illustration of Broad Learning System: base architecture.
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nhancement layer. Furthermore, Z is the output of the feature
apping layer. WWW e,h and βββe,h are randomly generated and the
imensions of WWW e and WWW h are hyper-parameters. ψ and ξ are
on-linear functions, such as tansig and tanh. Finally, the problem
s transformed into a linear equation system problem, which
s

WWW = YYY (1)
 W

4

o obtain W, Eq. (1) can be solved according to the generalized
nverse and ridge regression methods by optimizing :

in(∥AAAWWW − YYY∥
σ
ρ + λ∥WWW∥

σ
ρ ) (2)

here ρ and σ always equal to 2 and λ is the regularization
coefficient. It can be deduced that:

W = AAA†YYY (3)
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Fig. 4. Illustration of the proposed model. In terms of the overall structure, the model continues the classic BLS model, including two main parts. The left part of
the model realizes feature mapping, and the right part functions as the feature enhancement. There are essential two aspects to the model’s dataflow. The first is
the horizontal transmission, which continuously obtains the data features at different granularities. The second is to pass vertically upwards, binding the various
granular features obtained horizontally to the output layer (Y) as the output weight (W) of the model. The FMM modules (FMM-1, FMM-2, . . . , FMM-n) depict
he new feature mapping module and details are shown in Fig. 5. BN is the batch normalization operation, CONV and Pooling means the convolution and pooling
peration, respectively. And H1 , H2 , . . . , Hm illustrate the enhancement module, which are fully connected layers.
here
†

= lim
λ→0

(λIII + AAAAAAT )AAAT (4)

3. Proposed model

The model proposed in this paper is based on the general
network structure of the BLS algorithm, that is, a new convolu-
tion feature mapping structure is used to construct the feature
mapping module of the BLS model, and the numerous cascaded
fully-connected layers are adopted in the enhancement feature
layer.

In terms of the end-to-end model design, different from tradi-
tional machine learning, which requires additional feature extrac-
tion, the model proposed in this paper draws on the advantages
of autonomous learning of deep learning and obtains abstract
features of high-dimensional images through convolution opera-
tion. For the purpose of fitting the type of MRI images better, the
3D kernel convolution layer is applied in this paper. Therefore,
the model is trained directly on the MRI images, which does not
require additional dimensionality reduction (from 3D to 2D). As a
result, the proposed model is defined as a 3D convolutional broad
learning system (3D-CBLS). And this model does not need to
carry out additional feature extraction or feature predefining on
the image except for certain necessary preprocessing operations.
The image features are extracted by training the model itself to
achieve end-to-end training. The overall framework of the model
and the data flow is shown in Fig. 4 and Fig. 1, respectively. As
shown in Fig. 1, after necessary pre-processing such as skull re-
moval, the original image divided by the five-fold cross-validation
is transmitted directly to the model for training. The image data
at this point is XXX in Fig. 4. The final result YYY obtained in Fig. 4 is
the model’s final diagnostic conclusion for the patient. Here, the
model completes end-to-end training and prediction on the MRI
image.

Except for the end-to-end design, the primary intention of
the proposed model is to diversify the underlying features of
MRI images as much as possible and at the same time take the
high-level abstract features of the images into account, to obtain
better performance in the AD diagnosis. As shown in Fig. 4, the
entire model architecture has a data flow that transverse transmit
from the original image (X) to the upper-level operations, to
continuously abstract the image features. The FMM is composed
5

of multiple convolution-activation-pooling layers, which aim to
extract multi-scale underlying convolution features. And the en-
hancement module on the right, denoted as H1, H2, . . . , Hm, are
conventional multi-layer neural networks with data transmission
from the former one to the latter one. Consistent with the bench-
mark model structure of the BLS algorithm, the outputs of the
feature mapping module and feature enhancement module are
directly involved in the construction of the final output weight.
Among them, it is worth noting that, by drawing on the structural
design experience of ResNet [44], the vertical output of the first
convolutional network layer was discarded. As a result, it does
not directly contribute to the final output weight and the related
layer is shown as ’CONV’ in Figure 4.

For the feature mapping module, inspired by the special con-
volution structure of InceptionNet [45], the feature mapping
module designed in this paper is different from other BLS vari-
ants. The proposed feature mapping module is a pipeline with a
stacked convolution network block as the mainline. An instanti-
ated feature mapping module is shown in Fig. 5. The dotted lines
in Fig. 5 represent the horizontal forward data flow of the FMM
module, corresponding to the horizontal input and output of FMM
in Fig. 4. Meanwhile, the solid lines illustrate the vertical internal
data flow of the FMM module that offers multi-scale features.
And the green arrow represents the vertical output of the FMM
module, corresponding to the direct connection weight from the
module to the output Y in Fig. 4.

The lower convolutional layer of the multi-layer convolutional
network will first extract appropriate features of the overall im-
age. The design idea of FMM is to realize as diverse feature
expression as possible on the convolution feature of the under-
lying layer. Therefore, the FMM is constructed according to the
following rules. (A). Each FMM contains a number of parallel
convolution modules, which only have data transmission at the
bottom convolutional layer. Except that there is no data exchange
between these convolution modules and details are available in
Fig. 5. (B). The pooling of convolution features is an important
downsampling method. Thus, in the different groups in Fig. 5,
various pooling operation modes can be implemented, such as
average pooling, maximum pooling, etc. (C). In addition to the
above two aspects, the extension element-add operation under
the same size is applied in FMM to achieve another kind of non-
linear feature mapping. In practice, the element-add operation
can be spanned to different FMMs on the premise that the feature
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Table 2
The architecture of the model used in the experiment. Part 1:the whole
architecture.
Layer name Kernel Output size

Input 121 × 145 × 121

BatchNormalization 121 × 145 × 121

Conv3D 3 × 3 × 3, /2, 16 61 × 73 × 61

FMM-1
Conv3D⋆ 3 × 3 × 3, 16 61 × 73 × 61
Conv3D⋆ 3 × 3 × 3, 16 61 × 73 × 61
Conv3D⋆ 3 × 3 × 3, 16 61 × 73 × 61

Pooling 2 × 2 × 2 30 × 36 × 30

FMM-2
Conv3D⋆ 3 × 3 × 3, /2, 16 15 × 18 × 15
Conv3D⋆ 3 × 3 × 3, 16 15 × 18 × 15
Conv3D⋆ 3 × 3 × 3, 16 15 × 18 × 15

Pooling 7 × 7 × 7 2 × 2 × 2

Flatten 1 × 1 × 128

Fully Connected
layers

(
FC 64

Dropout 0.7

)
×5 (1 × 1 × 64)×5

Concatenate(FCs+Flatten) 1 × 1 × 448

Concatenate(FMMs) Shown in Table 3 1 × 1 × 352

Concatenate(All) 1 × 1 × 800

Output 1 × 1
⋆ These convolutional layers are the bottom horizontal data stream convolution
nodes in Fig. 6.

size is consistent. Fig. 6 illustrates an implementation of the FMM
structure.

For the feature enhancement module, a multi-layer, fully con-
nected neural network is adopted here. In Fig. 4, H1, H2, . . . , Hn
represent a neural network with n layers of full connectivity.
here is a one-way data transfer between them, and each layer
ontributes directly to the output layer Y. At the same time, there
ill be a Dropout layer to suppress the occurrence of overfitting
vents behind each full connection layer.

. Experiment and discussion

In this section, classification experiments are applied to the
DNI-1 dataset to confirm the effectiveness of the proposed
ethod. The evaluation of the proposed and competing methods

s conducted on two binary auto diagnostic tasks: (1) AD vs.
C, (2) pMCI vs. sMCI. All experiments on the ADNI-1 dataset
dopted the k-fold cross-validation method, in which K is 5 in this
aper. The experimental process can be seen in Fig. 1. Here, the
ompeting methods and the experimental settings are initially
ntroduced.

.1. Methods for comparison

In this paper, the proposed 3D-CBLS model is compared to a
ariety of state-of-the-art technologies, including multiple algo-
ithms for disease diagnosis based on MRI images and the fusion
f multiple data morphological features. Due to the complexity of
D-related datasets, researchers usually choose the more easily
vailable datasets for algorithm validation. Meanwhile, the code
eproduced from other published papers may not achieve the per-
ormance given in the original paper due to various limitations.
his leads to the possibility of errors in the comparison of results.
n order to make a more fair comparison of results, the relevant
lgorithms that testing on the ADNI-1 dataset were selected for

he model evaluation.

6

Table 3
The architecture of the model used in the experiment. Part 2:FMM.
Layer name Kernel Output size

FMM-1

⎛⎜⎜⎜⎜⎜⎝
Conv3D⋆

MaxPooling
Conv3D

MaxPooling
BN†

Flatten

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
3 × 3 × 3, 16
3 × 3 × 3

3 × 3 × 3, 8
7 × 9 × 7

−

−

⎞⎟⎟⎟⎟⎟⎠ 1 × 1 × 64

⎛⎜⎜⎜⎜⎜⎝
Conv3D⋆

AVGPooling
Conv3D

AVGPooling
BN†

Flatten

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
3 × 3 × 3, 16
3 × 3 × 3

3 × 3 × 3, 8
7 × 9 × 7

−

−

⎞⎟⎟⎟⎟⎟⎠ 1 × 1 × 64

(
Conv3D⋆

GlobalMaxPooling

) (
3 × 3 × 3, 16

−

)
1 × 1 × 16

FMM-2

⎛⎜⎜⎜⎜⎜⎝
Conv3D⋆

MaxPooling
Conv3D

MaxPooling
BN†

Flatten

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
3 × 3 × 3, 16
2 × 2 × 2

3 × 3 × 3, 8
2 × 3 × 2

−

−

⎞⎟⎟⎟⎟⎟⎠ 1 × 1 × 64

⎛⎜⎜⎜⎜⎜⎝
Conv3D⋆

AVGPooling
Conv3D

AVGPooling
BN†

Flatten

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
3 × 3 × 3, 16
2 × 2 × 2

3 × 3 × 3, 8
2 × 3 × 2

−

−

⎞⎟⎟⎟⎟⎟⎠ 1 × 1 × 64

(
Conv3D⋆

GlobalMaxPooling

) (
3 × 3 × 3, 16

−

)
1 × 1 × 16

FMMs Add Fusion
(
Add(†)
Flatten

)
– 1 × 1 × 64

Concatenate(FMMs) – 1 × 1 × 352
⋆ These layers are the same layers as the marked ⋆ convolutional layers in
Table 2.
† As these layers have the same output size, they are used as special additive
fusion layers in the proposed model.

4.1.1. Conventional methods
As mentioned in the introduction, the models using matrix

decomposition, PCA, and other statistical methods are divided
into traditional conventional methods. Most of these methods
require additional feature processing when making relevant di-
agnostics, such as the pre-delineating region of interest(ROI) or
landmarks. (A). ROI-SVM and ROI-SAE [46] are both diagnosis
algorithms based on ROI definition. The difference lies in that the
former one (SVM) adopts PCA for feature dimension reduction,
and then adopts the SVM algorithm for classification. However,
based on MRI data and PET data, the latter one (SAE) is to use
ROI images to train a stacked auto-encoder to reduce the feature
dimension and then to diagnose AD on low-dimensional data
through a full connection classification module. En-Roc [14] also
adopts the method of predefining ROI to extract image ROIs in
advance, and then the image is presented in a sparse manner with
dimension reduction, and AD diagnosis is carried out through the
Elastic network. (B). Conventional Landmark-based Morphometry
(CLM) is a classification method with engineered feature rep-
resentations [47]. CLM first adopts the landmarks’ definition of
the training set, and then performs feature extraction on that
data to train an SVM classifier. On the test set, the landmarks
defined in the training dataset are used to conduct SVM clas-
sification using the same feature extraction method. Similarly,
based on MRI images, the CLM algorithm is used to verify the
diagnosis of AD and the deterioration of MCI. However, due to
different MCI datasets, the MCI diagnosis results of this article
were not adopted in this paper. (C). Based on MRI data, Age
data, and CM data, [48] propose an MCI diagnostic algorithm,
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Fig. 5. Illustration of a basic feature mapping module (FMM).
S

hich completed the classification task using SVM and LDS by
ombining features of various data. Among them, Cognitive Mea-
urements (CM) data are the key information used by clinicians in
iagnosis, including the Mini-Mental State Examination (MMSE),
linical Dementia Rating (CDR), Rey Auditory Verbal Learning Test
RAVLT), Alzheimer’s Disease Assessment Scale-cognitive subtest
ADAS-cog) and Functional Activities Questionnaire (FAQ), etc.
or the sake of simplicity, this method simply named MCI-CP.
D). The last method involved in the comparison in this kind of
ethod, namely LRLAD, is proposed by [31], which uses the MRI,
ET, and Genetic data as a diagnostic basis. For the problem that
ET and Genetic data cannot cover all subjects completely, the
RLAD algorithm adopts MRI images as routine data to extract
he common latent representation, while PET images and Genetic
xpression as additional data to extract special latent representa-
ion. Finally, two latent representations constitute the potential
pace for AD classification.

.1.2. Convolutional neural networks or deep neural networks
In recent years, this method has greatly improved the diag-

ostic accuracy of AD by integrating various types of data. The
lgorithms compared in this paper mainly include the following
tate-of-the-art methods. (A). VCNet [21] is a deep neural net-
ork with a multi-layer convolution-activation structure stacked
o realize the AD diagnosis and provide visualization of corre-
ponding diagnosis results. (B). CAE and ICAE [22] is a set of
3D convolution classification models based on convolution auto-
encoder. Similar to this paper, are dedicated to enabling end-to-
end diagnosis of AD. In addition, the training strategy is similar to
this paper, after the model is trained for the AD task, the knowl-
edge is transferred to process the MCI diagnosis. The disparity
between the two models is that the ICAE model borrows from
the Inception model’s network architecture in the model struc-
ture. (C). CMCN [49] is an ensemble learning model combining
multiple convolution models, including multiple convolutional
encoders and multi-layer stacked convolutional neural networks.

(D). M-DeepESRNet [25] is a model constructed by another type

7

of ensemble learning approach. Similarly, M-DeepESRNet realized
the secondary application of sparse expression features of MRI
image data to the convolutional neural network through ensem-
ble learning, namely the fusion of deep convolutional network
and sparse regression model.

4.2. Details of the experiment

4.2.1. Model evaluation
For the fairness of evaluation, multiple assessment indicators

were used to evaluate different models. The specific formulas
can be seen as follows. Accuracy (ACC) is the overall accuracy of
the outputs of the model testing on the test dataset. Sensitivity
(SEN) is a measure of how well a model can correctly identify
the number of positive samples in all positive samples. Similarly,
specificity (SPE) is a measure of how well a model can correctly
identify the number of negative samples in all negative samples.
And precision refers to how many samples are correct identified
in the positive samples predicted by the model. The closer its
value is to 1, the better the performance of the model.

ACC =
(TP + TN)

(TP + TN + FP + FN)
(5)

EN =
TP

(TP + FN)
(6)

SPE =
TN

(TN + FP)
(7)

Precision =
TP

(TP + FP)
(8)

Where TP, TN, FP, FN is the number of true positives, true
negatives, false positives, and false negatives, respectively. In
addition, the commonly used classifier measurement named Area
Under the Curve (AUC) in the binary classification problem, is also
used in this paper.
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Fig. 6. Illustration of the feature mapping module (FMM) used in the experiment. There are three sets of convolution pooling activation modules in the module,
hich are G-1, G-2, and G-3 in the figure. In terms of pooling operation selection of G1, G2, and G3, this paper adopts maximum pooling, average pooling, and
lobal maximum pooling respectively. In addition, the blue module is the element plus operation, in order to obtain more diverse features. In practice, the element
lus operation can be spanned to more than one FMM if the dimensions match.
.2.2. Training strategy
As mentioned earlier, our experiment is divided into two tasks.

he first is the AD diagnostic task, i.e. AD VS CN, and the second
s to diagnose whether the patient is a stable MCI patient or a
ore severe progressive MCI, i.e. sMCI VS pMCI. For these two

asks, there are some differences in the training strategies. For the
irst task, the conventional method of initial training was adopted.
eanwhile, the method of 5-fold cross-validation was adopted
n the dataset, and the final experimental results were obtained
rom the mean value of five experiments.

In recent years, transfer learning has become a learning and
raining method widely used by researchers. Its definition per-
ectly explains its main idea: the ability of a system to recog-
ize and apply the knowledge and skills learned in previous
omains/tasks to novel domains/tasks. From harm to patients, the
MCI to a certain extent can be thought of as the normal CN,
nd the pMCI can be thought of as the inevitable AD patients.
herefore, the second task is a more detailed and difficult sub-
ask of the first task in this paper. As a result, the method of
ransfer learning in training is adopted in this task, that is to say,
he second task model at the beginning of the training will inherit
he knowledge learned in the first task.

.2.3. Details of the model architecture and training settings
As well as the specific parameter details of the model, includ-

ng the size of the convolution kernel, are presented in Table 2
nd Table 3. In terms of the overall structure, there are two sets
f FMM modules in the feature mapping module and 5 fully
onnected layers in the feature enhancement module. Except the
inal output layer adopts the sigmoid activation function, ReLU is
used for all other layers requiring output activation. The learning
rate is LR = 5e-4, while the probability of dropout is set to P = 0.7.
Furthermore, all the kernels are initialized by ’TruncatedNormal’
method, and the initialization parameters of ’TruncatedNormal’
8

are fixed as mean=0 and stddev=0.05. And the cross-entropy loss
function is adopted as the training loss function similar to other
convolution algorithms. To ensure the fairness of the experimen-
tal results, the data enhancement technology is not adopted, but
the image resources are normalized.

4.3. Performance on ADNI-1 dataset: AD vs CN

As described in the previous section, the effectiveness of
the proposed model is verified in diagnosing AD on the ADNI-
1 dataset. Limited to the size of the ADNI-1 dataset, in or-
der to evaluate the model more fairly and equitably, the k-fold
cross-verification is a more reliable method.

Table 6 shows the performance of the proposed model and
other models testing on the ADNI-1 dataset. By comparing the
experimental results in Table 6, it can be found that this proposed
model has certain comparative advantages in multiple indicators
on the task of AD vs CN. Among them, the accuracy and speci-
ficity can reach the best results in all the models that provide
corresponding results, especially the specificity has an obvious
advantage over other models. Fig. 7 illustrates the performance
of the eight models, and these results are distributed in three-
dimensional coordinates according to the three indicators of ACC,
SEN, and SPE.

On the one hand, compared with traditional learning methods,
the proposed model has noticeable advantages in all indicators,
whether it is the overall accuracy or the specificity and sensitivity
to measure the accuracy of positive and negative samples. In
terms of overall accuracy, the accuracy of the model in this work
can reach 91.83% which performs better than other traditional
methods. At the same time, the results of the proposed model
still have more prominent advantages in terms of sensitivity
and specificity, indicating that this model has higher accuracy in
screening true negative and true positive patients. Specifically,
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Fig. 7. Demonstration of the accuracy, specificity, and sensitivity of the eight models on the AD diagnostic task.
among all positive patients, this model can accurately screen
out 90.47% of positive patients, and among all negative patients,
this model can accurately screen out 93% of negative patients.
These performances are significantly better than other traditional
models and methods. More importantly, the proposed model
does not require additional feature processing operations, such as
describing the target region of interest (ROI), although it is well
known that adding additional feature processing will improve the
performance of the algorithm to some extent.

On the other hand, compared with these similar 3D convo-
lution models, the model in this paper still has advantages in
most evaluation indicators, except for specificity. As shown in Ta-
ble 6, the accuracy of the proposed model can also reach 91.83%,
which is 1.55% higher than that of the M-DeepESRNet model.
However, the sensitivity of the proposed model is lower than
that of the M-DeepESRNet and CMCN1 models, and the speci-
ficity is higher than them. This shows that the M-DeepESRNet
and CMCN1 models have advantages in diagnosing positive pa-
tients, and the model in this paper is more reliable in diagnosing
negative patients. Although the above models have their own
advantages, in addition to the proposed model and the VCNet
model, the other 3D convolution models require a certain degree
of additional operations. For example, the CAE and ICAE models
require unsupervised data pre-training, while the M-DeepESRNet
model requires ensemble learning of complex models.

4.4. Performance on ADNI-1 dataset by transfer learning: sMCI vs
pMCI

The diagnosis of mild cognitive impairment can be viewed as
a subtask of the AD diagnostic task, which is more difficult. It is
generally believed that the experience gained from the diagnosis
of AD can be transferred to the diagnostic task of mild cognitive
impairment.

Table 7 presents the performance results of the multi-model
in the course of diagnosis of mild cognitive impairment.

On the whole, the experimental results of the proposed model
are similar to those of the AD diagnostic task in each evalu-
ation measurement: ACC, Specificity, and AUC are higher than
other models but the Sensitivity is lower than the MCI-CP model.
Among the traditional methods, similar to the M-DeepESRNet
9

model that has significantly higher Sensitivity, the ability of the
MCI-CP model to screen the positive samples in all positive sam-
ples is stronger than that of other models. And the Specificity of
the MCI-CP model is significantly lower than that of other models,
indicating that the ability of the MCI-CP model to correctly iden-
tify the negative samples in all negative samples is weak or it is
hard to identify the real negative patients. In terms of the ACC and
AUC, compared with the LRLAD model, the model in this paper
has an average improvement of 1.22% and 1.54%, respectively, but
does not require predefining the ROIs by external methods.

Compared with other 3D-CNN models, the model proposed
in this paper can outperform the CAE and ICAE models in most
indicators despite the same transfer learning. With respect to the
M-DeepESRNet model, the model proposed in this paper exceeds
it in all evaluation indicators, although the M-DeepESRNet model
is a model which uses several models to learn together.

5. Discussion

In this section, the following points are focused to analyze and
discuss the improvement.

5.1. Comparison of complexity between different 3D-CNN models

In the overall evaluation of different models, it is necessary
to compare the overall complexity of various 3D CNN models.
The complexity of a model usually includes temporal complexity
and spatial complexity [50]. Among them, the spatial complexity
of the model is usually compared with the parameter scale of
different models. The spatial complexity describes how many
parameters this model needs to define, that is, the storage space
required to store the model. And the temporal complexity of
the model is generally reflected by the calculation amount of
the model (FLoating-point OPerations, FLOPs). The temporal com-
plexity describes the amount of calculation required for data to
flow through the model once.

Here, in order to measure the model complexity of the model
proposed in this paper and other similar 3D CNN models, a
comparison of the model complexity is present in Table 4. At

the same time, the diagnostic accuracy of each model on the
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Table 4
Comparison of complexity between the proposed model and part of the 3D-CNN
model.
Method ACC # of params FLOPs

VCNet [21,22] 74.30 ± 6.34 5324K 10.64M
CAE [22] 85.24 ± 3.97 1446K 2.90M
ICAE [22] 86.60 ± 3.66 371K 0.74M
Proposed model 91.83 ± 0.90 81K 0.29M

Note: To facilitate the comparison between the number of parameters and the
diagnostic performance, the accuracy of the above models on the AD diagnostic
task was also listed here.

Table 5
Validation of the FMM.
Method ACC # of params

Model 1 Training failure† 40K
Model 2 72.13 ± 4.02 907K
CCF-BLS [41] 84.64 ± 2.87 3.13M
Proposed model 91.83 ± 0.90 81K

† The model cannot converge in the maximum epoch, and the output results
are of no practical significance.

AD diagnostic task is also listed in Table 4 to facilitate the com-
prehensive comparison of model complexity and model perfor-
mance. The other models are not listed here because the feature
pre-extraction/processing or multi-model integration is applied
to their models, which would result in little comparable. By
comparing, it is obvious that among the similar 3D convolutional
neural network models, the proposed model can not only achieve
a high accuracy of AD diagnosis, but also the complexity of the
model is significantly lower than that of other models. Mean-
while, the temporal complexity of the proposed model has similar
advantages compared with other models. In detail, the proposed
model contains about 25% parameters and 40% FLOPs compared
to the ICAE model with 5.23% higher ACC improvement.

5.2. Does the FMM work?

In order to verify the effectiveness of the FMM proposed in this
aper, the following two models were built for the AD diagnostic
ask. Model 1: The normal horizontal feature transfer of the FMM
(the dashed line of horizontal transfer in Fig. 5) was retained, but
the FMM module’s contribution to the final output was canceled.
And all other parameters are consistent with the model proposed
in this paper. Model 2: The network structure of Model 2 is
the same as that of Model 1, however, except for the network
structure, other parameters are adjusted to find the best model.
In addition, the homologous isomerism model CCF-BLS [41] is
also introduced in this paper as the FMM module performance
comparison model.

By comparing the experimental results of all models in Table 5,
it is obvious that without the FMM, the performance of the same
model will decline significantly until it fails completely. If the
models of the same structure work properly, additional param-
eters are required and diagnostic performance is compromised.
Since our model can be considered as an improved version of
the CCFBLS model, the longitudinal comparison with the CCF-
BLS model can better illustrate the effectiveness of FMM. The
CCF-BLS model is originally designed to solve the general image
recognition task. For the purpose of fitting the image shape, the
convolutional kernel of CCF-BLS was extended to 3D and the
3D CCF-BLS was trained on the AD diagnostic task. From the
experimental results in Table 5, the proposed model can maintain
excellent superiority in terms of performance and the number of
model parameters.
10
Based on the above discussion and analysis, it can be con-
cluded that the model proposed in this paper can maintain the
same level or have certain advantages as the current excellent AD
diagnostic algorithm on the whole, and the scale of the model
is also more concise. In addition, compared with the homology
algorithm CCF-BLS, our algorithm is also an effective improved
version, and as far as we know, this is the first comparison exper-
iment on 3D medical images, and the experimental results also
verify that the improved algorithm has more obvious advantages,
including performance improvement and significant reduction of
model size.

5.3. Feature visualization

In order to show the relevant characteristics of FMM features
more intuitively, the t-SNE [51] method was adopted to conduct
dimensionality reduction processing for the features of different
modules, so that the data distribution can be displayed. The
specific content can be seen in Figure 8. Sub-figure (a) is the vi-
sualization of the top layer feature reduction of the FMM module,
while sub-figure (b) is the visualization feature distribution of the
feature reduction of the feature enhancement module. The red
number 1s in the figure represent the same category, and the blue
number 0s represent data for the other category. The data here
is derived from a test set in the 5-fold cross-validation, which is
predicted by the trained model of the corresponding training set.
By comparing Fig. 8, it can be clearly found that the top-level fea-
ture distribution of FMM is denser than the feature enhancement
module. Meanwhile, the features belonging to different classes
are more distinct and almost linearly separable.

In the previous statement, it is known that medical images
have obvious characteristics of global high similarity and local dif-
ference. Although higher-level abstract features strongly support
classification results, low-level features are also essential to the
classification task. It is well known that a stacked convolutional
neural network can extract higher-level abstract features of an
image and generally pay more attention to the strongest features
of the classification [52,53]. And the bottom convolution will pay
more attention to the texture of the image. In Fig. 4 and Fig. 5, the
data flow transferred horizontally at the bottom of the proposed
model is consistent with the stacked multilayer convolutional
network, that is, the horizontal link at the bottom completes the
work of extracting high-level abstract features. In this section,
a convolution block in the FMM was extracted and traced back
its final output through a gradient to obtain its attention map in
the original image, and the attention map is shown in Fig. 9. At
this point, the FMM completes the additional low-level feature
collection. In Fig. 9, the attention map in the corresponding sub-
figure (b) is in the position relation of sub-figure (a), it can be
clearly found that this module can pay attention to the overall
structure of the image to a certain extent, while ignoring the
influence of some structures, such as the link parts of the left
and right hemispheres. This can also be illustrated by the obvious
difference in the output characteristics between the two modules
shown in Fig. 8.

Combining the above two points, it can be concluded that
FMM and Feature enhancement module have different functions
for the overall model performance. FMM focuses on obtaining
the underlying global features of the image. Meanwhile, com-
bining the experimental results of models 1, 2 (with or without
the FMM), and CCFBLS in Table 5, it can be proved that FMM
can effectively improve the generalization performance of the
model with a lightweighted structure, which also proves the
effectiveness of FMM.
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Fig. 8. Illustration of data feature representation: (a) represents the feature distribution of the FMM module’s top layer features reduced to two-dimensional space
by the t-SNE algorithm. (b) is the feature distribution of the feature enhancement module after the same processing.
Table 6
Performance of multi models on ADNI-1 dataset: AD vs CN (%).
Type Method Additional processing ACC Sensitivity Specificity Precision

Traditional
CLM [47] Landmark 83.70 ± 2.60 80.90 ± 3.50 86.70 ± 2.20 –
En-ROC [14] ROI &Feature selection 89.10 – – –
SAE [46] ROI mark 82.59 ± 5.33 86.83 ± 6.83 77.78 ± 10.83 –

2D/3D-CNN

VCNet [21] None 74.30 ± 6.34 76.21 72.50 –
CAE [22] Unsupervised pre-trained 85.24 ± 3.97 88.28 82.39 –
ICAE [22] Unsupervised pre-trained 86.60 ± 3.66 88.55 84.54 –
CMCN1[49] Ensemble learning 88.31 91.40 84.42 –
M-DeepESRNet [25] Ensemble learning 90.28 92.65 89.05 –
Proposed model None 91.83 ± 0.90 90.47 ± 3.50 93.00±2.51 91.50±2.66

Note: Values are presented as mean ± Std. The best results are marked in bold.
11
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Fig. 9. Illustration of the attention map belongs to part of FMM: (a) the original brain image. (b) the feature attention map.
Table 7
Performance of multi models on ADNI-1 dataset:sMCI vs pMCI (%).
Type Method Additional processing ACC Sensitivity Specificity AUC

Traditional MCI-CP [48] Feature selection 74.74 88.85 51.59 76.61
LRLAD [31] Multi-modality&ROI 74.30 – – 75.50

2D/3D-CNN

CAE [22] Transfer learning 73.23 ± 4.21 74.96 71.53 –
ICAE [22] Transfer learning 73.95 ± 4.82 77.46 70.71 –
M-DeepESRNet [25] Ensemble learning 73.28 ± 6.35 70.61 75.29 71.92
Proposed model Transfer learning 75.52 ± 2.29 74.96 ± 6.06 76.18 ± 8.01 77.04

Note: Values are presented as mean ± Std. The best results are marked in bold.
6. Conclusion

In this paper, a novel convolution model is established for the
diagnosis of AD and MCI based on MRI images. The main structure
of the proposed model is derived from the Broad Learning System.
On this basis, a new FMM structure is proposed to improve the
BLS model and carried out experimental verification on AD med-
ical images. This new FMM module auxiliary model completes
the extraction of features of different scales and promotes the
new model to achieve an improvement in the performance of
the model compared with the homologous model. In terms of
model learning and training, the proposed model does not require
additional feature preprocessing operations and can complete
model learning nearly end-to-end. Compared with some cur-
rent excellent methods that require additional feature processing,
such as data dimensionality reduction, feature extraction, multi
models and multi types of data ensemble learning, etc., the model
proposed in this paper could achieve better performance only on
MRI data by relying on the model itself, which is more concise
12
and effective. The performance of various current excellent algo-
rithms is tested on the ADNI-1 dataset, no matter the traditional
algorithm or CNN algorithm. The testing accuracy of our model is
91.83% that 1.5% higher than that of the current best model M-
DeepESRNet when diagnosing AD vs CN. Furthermore, in terms
of model scale and performance, compared with other models
of the same type, the most prominent advantage of the model
proposed in this paper is that it takes the smallest temporal
and spatial complexity to achieve the highest model diagnostic
performance. For example, in the five-fold cross-validation of the
ADNI-1 dataset, the performance of the proposed model on the
AD diagnosis task is 1.5% higher than the average accuracy of
other similar optimal models, and the number of parameters and
calculations of the proposed model is at most 25% and 40% of
other compared models, respectively.

In addition, the strategy of transfer learning is also applied to
MCI diagnostic task by transferring the knowledge learned from
the AD diagnostic task. From the experimental results, the pro-

posed model still performs well compared with other algorithms
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dopting the transfer learning strategy. At the same time, for the
ccuracy and AUC, the model proposed in this paper has better
erformance than other conventional models.
Overall, the proposed new model has a comparative perfor-

ance on both the AD and MCI diagnostic tasks on the ADNI
ataset with nearly end-to-end learning, light-weighted model
arameters. And this paper further verified that the global feature
f medical images could provide an effective auxiliary for model
lassification to some extent to reduce the generalization error.
herefore, in future work, we will further optimize and improve
he model based on the effectiveness of the extracted features of
he model itself and improve the generalization performance and
nti-overfitting ability of the model, to better deal with the MCI
iagnosis task.
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